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Vibrational Characteristics of Annular Plates and
Rings of Radially Varying Thinkness

Seung-Ho Jang*
(Received March 9, 1995

In this paper. annular plates having thickness variation are studied by deriving the equa-
tions of motian on the basis of the Mindlin plate theory. The Chebyshev collocation method is
employed to solve the differential equation governing the transverse motion of such plates. The
dimensionless frequencies are evaluated for different values of taper constant (), thickness ratio
(/). radii ratio (&) and power (). The results of an expertmental investigation are also
presented. and the agreement between these {indings and the predicted values in theory is
remarkably good. As a result of this study. it is found that the effects of rowatory inertia and
transverse shear deformation reduce the natural frequencies for all boundary conditions and for
all values of o [y & ¢ and  (mode number). This study also showed that the natural
frequencies of annular plates with thickness expressed by the nth power function are higher than
those by the (- 1)th power function for positive vidues of ¢, and vice versu for negative values
of ¢ o all three boundary condinons, Maoreover. there s a proof that the natural frequencies
aof annular plates tend to be higher oy the taper constant decrease and/or as the radit ratio

increase for all three boundury condiitons and for all values of ;0 s and /.

Key Words: torced Vibration, Rotor. Natural Frequency. Annulur Plate. Ineriny, Shear

Deformation. Boundary Condition

Nomenclature I : 'l’.hicknm» r:\llin‘ .
I o Number  of Chebyshev  collocation

1 » Flexural nigidity of plate (/07121 point

) i : Power
I © Young's modulus of annular plate d o External force per unit area
(; o Shear modulus of annular plate S © Mode number
I o Dimensionless vartable (/) ! o Time
N : Unknown constants v - Dimensiontess vartable (7 ¢)
M. A, Bending moments per unit length v o Chebyshey constunt detined by Eg.
Moy » Twisting moment per unit length (7h)
(Jre Jo ¢ Rudini and tangental shearing forees

Greek Letters
per unit length ?

A o Chebyshey polynomials i : Taper constant
T : Chebyshey  polynomials with super- & © Rutio of the inner and outer radi
seript  meaning  integration  with (D7}
respect v I8 o Averaging shear coefficient (- 72/12)
// : QOuter radius D Poisson’s ratio
h : Inner radius o : Density (mass per unit voluine)
h - Thickness of plate defined by tg. (3) @ o Cireular frequency
0. o Dimensionless frequency  parameter
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and shear deformation
Q. : Dimensionless frequency parameter

from classical plate theory
1. Introduction

In recent years, the annular plates of variable
thickness have been extensively used in the
dynamic design of various machines and struc-
tures to reduce their weights and sizes. Consider-
able work has been done on vibrations of circular
plates of the uniform thickness. Leissa (1969)
reviewed the work done on vibration of plates.
Soni and Rao (1973) studied the vibration of a
circular plate with linear Lenox and
Conway (1980) obtained an exact, closed form
solution for the flexural vibration of a thin annu-

taper.

lar plate having a parabolic thickness variation.
Gupta and Lal (1982) studied free axisymmetric
vibrations of polar orthotropic annular plates of a
variable thickness. Gorman (1983) applied an
annular finite element method to annular discs
with variable thickness which have polar orth-
otropic characteristics. and Vijaya-
kumar (1985) applied the Rayleigh-Ritz method
to obtain the natural frequencies of polar orth-

Ramaiah

otropic annular plate. In addition, Kang (1992)
treated a Fourier series method for polygonal
domains ; large element computation for plates.
Lee and Sin (1994) studied the Mindlin plate
finite elements by using a modified transverse
displacement.

In this paper, the equations of motion of annu-
lar plates whose thickness varies with Jf=:J(1
— ax™)(for p=1, 2, 3, and 4) are established with
the effects of rotatory inertia and shear deforma-
tion included. Since the plate used in the actual
practice may have a large thickness, it is impor-
tant to include the effects of rotatory inertia and
shear deformation in order to predict their
dynamic behavior with a fair amount of accuracy.

Frequency equations are determined using the
Chebyshev collocation method for three combina-
tions of boundary conditions (i.e., C-C, C-S, C
-F; C: clamped edge. S: simply
edge, F: free edge). And, the frequencies are
computed for different values of taper constant

supported

(@), radii ratio(g), thickness ratio(}s), and
power () and for the first three modes of vibra-
tion in all three cases. The natural frequencies of
the annular plates are also investigated by experi-
ment and the theoretical values are compared
with experimental results.

2. Theoretical Analysis

The isotropic, homogeneous and elastic annu-
lar plates of radially varying thickness are depict-
ed in Fig. 1.

The neutral surface of the annular plate is set
on the cylindrical coordinate system(r. § and
7). Consider a plate element dr d§ subject to
an external force per unit area 4. Then the stress
resultant can be exhibited as shown in Fig. 2.

The use of Newton’s 2nd law yields the equilib-

h=any (1 —ax™)
e e

i) @ <0

Fig. 1 Annular plates of radially varing thickness.

Stress resultant

Fig. 2
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rium equations.
These equations can be simplified as follows :

03:[, M_,_; Mo i Vg aM m O

-4 o "
‘9%"’ +2!‘:1’” +7 %\gi_ Qs

:,pl,%i ,a;%a (Ib)
%Jﬁ%%ﬂﬁ, Qr+ V'O/Z 812 (Ic)

The right hand side terms of Egs. (1a) and (1b)
In the

classical plate theory these terms are neglected.

are the rotatory inertia of the element.

Equations (la), (1b) and (lc) are the equations
of motion of an annular plate when an external
force g is applied (Here, the equations of motion
for free vibration are obtained when ¢=0).

For the axisymmetric motion, Egs. (1a), (1b)
and (Ic) become

oMy My—Ms _ 5 _ ol PP

or 2 W=7 ot’ (2a)
Qr 0@ _ , Fw

A T (20)

where
M= D<‘9¢’+ ¢>)

wn=n( G+ v )

O /ech(qs 1 ) (20)

For harmonic motion,
w(r, H=a(r)e™" and
7, D=p(r)e™ 3)
Having substituted Egs. (2¢) and (3) into Egs.
(2a) and (2b) and rearranging, the results can be
rewritten as follows :

(1 — u) dZL X ;
v 2kcrt <¢+ )o (4)

dr
[;»w1+12();/l~E¢_? GAT=0  (4b)
where
A, | dp_ ) cdi(
V= 1((1’)’ y dr +3h dr \dr
(1%

+ </>+p/z

Consider an annular plate whose thickness is
expressed as power functions. That is,

h=qahl —ax")(n=1, 2, 3, and 4) (5)

When the numerical value of 3 is very large the
thickness suddenly varies near the edge. Since
such plates are not common in practice, the values
n=1,2,3, and 4 are considered in this paper. The
plate thickness changes linearly for ;=1 and
changes parabolically for =2.

Elimination of /& from Eq. (4) and substitution
of Eq.
uncoupled differential equation in ¢. The result-

(5) into the new equation leads to an

ing equation for the thickness variation in the
radial direction is reduced to the non-dimensional
4th order linear homogeneous differential equa-
tion with variable coefficients as follows :
d d
ALS+ALE 1 0,984 4%
+ Asp=0 (6)
Case 1) When =1, that is, when H = jy(1-a
x) the coefficients 4, to A, can be determined as
follows :

Ap=(l—ax)?
3
A1=-;7(1 —ax)(1 —5ax)

=L (0 — a2 71,;) B TR,
(1 —ax)(1043))+ 12¢2x%)
Ayl (= @0 221+ 710—) 34

(1—ax){6+3 v+ 35— Q%5 +7§;)}
33y +2))

A=l = @ QX Q2= 1)~ 1)
X 0

—3}- a/x(l~ax)(8+52§x2(2+3%0')
=31+ 2y — %Y

—Eon) (6)
where
pd*™ (1 =% v .k
L e o E
ARG =)
o= L W=

Case 2) When =2, that is, when H = Al
—ax?) the coefficients A, to A, can be deter-
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mined as follows :
Ao=(1—ax?)?
A= %(1 —ax) (1 —%ax?)

A= (0= @251+ 0) -3} =(

—ax ) {2ax?(1043v) + lSa,\ }
+485%x%)

Ag:%[( L — ax ) 2

2(l+ +3)}+(1

—ax)2ax* (11 +3y — Qéx*(5+ 37;;-))
0

+ 121+ )} + 12653 +2)
+60g%x")

/hzw}y[( 1 — ax 2P { QX (%2 -] )#1*~ 1)
X /€o

=3} = (1= ax){2ax™(8+ 282

+ 3-%)) —6ax(1+ )} — 122 (1 + 2y

_ng)-,v? x4+ 60a"x*y}  (6b)

Case 3) When »=3, that is, when H = }(!
—ax?) the coefficients A, to A, can be deter-
mined as follows :

Ap=(1—ax?)?

Ar=2(0—ax)(1 — 3ax)

Ae=L (1 = P Qi1+ =3y +01
¥ Fo

—ax® M- 3ax¥(10+3p) —54ax?)
+108a%x%)

A=l (1~ a,x<*>2{9§x2(1+7“;+3)}—(1
—ax® ) = 3ax® (11 +3y)— Q%5
+»%))—36ax3< [+1)— 18y
+27Px%3y +2) +2700%x%)

A= (1= a2 Q22— 1) 1)
X /\?o
=3+ (1—ax®) = 3ax3 (8 + 2572

370+ 181+ v) — 18ax™y}
110
27641+ 2y — Q) — 5 Ok
Q0
+270¢%x%) (6¢)

Case 4) When n=4, that is, when H = J(l
—ax?) the coefficients A, to A, can be deter-
mined as follows:

Ao=(1—ax?)?
Al:%( L —ax)(1—17ax?)

A= :2[““01‘(4) Qi+ ) 3)+(1

—a/;x*'){—4a.1“(|0+31/)~ 108afx }
+1924%x%)
A= 0— axVQ( +0)+3) -1
—ax W —4axi(11+3)— Qx5
+7f(;-)) — 2041+ )~ T2ax")
+48a*x*(3v +2) + 7204 %)
Ag= 00— ax Q@i — D — 1)
X /€0
=3+ (11— ax){ —4ax*(8+ Q5x*(2
+3)+36ax(1+ 1)~ T2ax"y)
2
— 482 x%(1 +2y — QEx%) —%?ix“
]
+7202x%y) (6d)

3. Numerical Analysis

3.1 Method of solution

Equation (6) is a linear differential equation
with variable coefficients. Its solution can not be
easily found in closed form. The Chebyshev collo-
cation method has been used in this paper. Since
this method is applicable only in the interval
(—1, 1), the range of the differential Eq. (6) can
be transformed from the interval (g, 1) to (—1, 1)
by the following transformation

A(1—‘s)yz+(l+s) (7a)

Where, v is defined as

V=23
_ 2j4+1
_COS< m—4 " 7)
(=123 -, m—4) (7b)

Substitution of Eq. (7a) into Eq. (6) yields

E)d]qfa}‘f'Fna;js‘f'Fz ¢+F3d(€

+ Fi¢p=0
2

e o) real )

). meal)
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Fi— Ay (8)
where, A, to A, are variable coefficients of Eq.
(6).

According to the Chebyshev collocation
method,
d'$ )
v Z. K. T (9a)

where, K;/’s{(i=35. 6, ---,
are Chebyshev

m) are unknown con-
stants, and T's polynomials

defined as

’[‘u:'h 7‘17:'_\’- ng?-

If Eq. (9a) Is iteratively integrated with respect to

A

¢ and its derivatives can be expressed in terms of

7T and A,.
ddgzﬁ

LK+ D KT, (9b)
(j ql) [( ” () 9\
([ 3+A;F1+2A (-5 (9¢)
WK KT K= 5K 0 (94)

9”) K+ KT K;Tlm"‘”}\] TI(Z)
PSR (9e)

where. K. K., K; and /K, are the constants of
integration.

The superscript over 7" denoting the integra-
tion with respect to v is defined as follows :

]"‘””/ Telv=

=T 1=l

(9a~e) into Eq. (6),
the final equation for m (number of Chebyshev

Having substituted Eqgs.

collocation point) can be exhibited in a matrix
form.
K 7 0 V
K> 0
L‘qll Ap Ap - 44/m: Ky |l=1 0 (/=1

,/"7” 0 -
2,3, -, m—4)

or in a simple form,

(N =H{0) (10)

Where, [ V'] is an (m— 4) by m matrix, and { K}
is a column vector of order m. Other four equa-
tions can be obtained by employing the boundary
conditions at the inner and outer edges of an-
nulus; y=—1 and y=1 respectively. Thus, m

equations and m unknown constants are

obtained.

3.2 Boundary conditions and characteristic
equation
The following combinations of boundary con-
ditions are considered ;
1) both inner and outer edges clamped(C —C)
Wiy |y =0
D)) yery =0
These equations can be expressed in a matrix
form as
[Nee] {K}=10) (1)
where, [ N] is a 4 by m matrix, and {K)} is a
column vector of order m.
1) inner edge clamped,
supported(C —
W |- =0,

2 Ndh
< - > dﬁ) + (/)’ \:ITO
1-¢ o
+
| s

outer edge simply

Hlv) 1= 0
or in a matrix form
"Nes] {A =10} (12)

where, [N, is a 4 by m matrix, and {K} is a
column vector of order m.
iti) inner edge clamped, outer edge free(C —F)

IT/( ') ’ y= ]:O

(e)
l—¢/ dv
2
B0 | v =0, (/)+(—]—;—;> (f}f; "
or in a matrix form
"N {K =10} (13)
where, [N, ] is a 4 by m matrix, and {K} is a
column vector of order m.
Combining Eqs. (11). (12), (13) and (10), we
obtain the following equations.
C-C case: [ N J (Klmo=10)  (14)
A’\/(“(‘ mxm
Cseve: [ ] (Kla={0]  (5)
s mesin

L Nes
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C-F case: [—AJ {K}ma=10}  (16)
]\’u—‘ m=m

For nontrivial solutions of Egs. (14). (13) and
(16), the frequency determinant must be vanished
and hence we obtain

(17

(18)

and Rings of Radially Varyving Thinkness 151

N
Sl —0 19
N (19)

Equations (17), (18) and (19) are thus charac-
teristic equations for the C-C, C-S and C-F
cases, respectively.

3.3 Numerical evaluation and discussion
Since a plate is an example of a continuous
system, infinitely many roots of a frequency

P -

4 - :
o e |}
0.0 T 1 - = -.T_ N
0.01 (.05 0.1 0.01 0.05 0.1 0.05 0.1, 0.2
o o )
Fig. 3 Dimensionless frequency parameter vs. thickness ratio for n==1 and g+ —~0.5. -—-——~_ shear
theory @ «ooeeverenns , classical theory ; F, Ist mode ; S, 2nd mode : T. 3rd mode.
Q
8.0
6.0}
[
2.0
0.0
'
1
T f T T
0.01 0,05 0.1 0.0l 0.1 0.05 0.1 0.2
N ho Ho
Fig. 4 Dimensionless frequency parameter vs. thickness ratio tor n-=2 and g= --0.5. ~——— - ~, shear

theory ;

. classical theory ; F. Ist mode : S, 2nd mode : T. 3rd mode.
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parameter can be obtained. The frequency param-
eters are computed for the first three modes of
vibration according to the present theory. The
number of collocation points (i. €., m) is fixed at
13, since further increase in m does not noticeably
improve the results.

Frequency parameters s and (. are computed

for all three cases of the boundary condition ;

(i) when the radii ratio(g) varies form 0.1 to 0.
7 by an increment of 0.1,

(i1) when the thickness ratio( /) varies form 0.
0! to 0.2 by an increment of 0.01,

(i1i) when the taper constant{g) varies form -0.
7 to 0.7 by an increment of 0.2(for =1, 2, 3 and

Q
8.0
T L e=o.2 Jr | e=0.2 Pk
e
-S - ’//' “
T el T
S - s =S
P 2 mmT s
F F
T T F
H
(c) C-F plate .
4 ,//
| £€=0.4 /_T L £=0.4 A
s L gy Ve
Lo Lo ]
- 7 . Vv
’/
SR SR A W 4 FEZ .
e
" ,
5
¥
F
0,0 T T
0.01 0.05 0.1
Fig. 5 Dimensionless frequency parameter vs. thickness ratio for n==3 and g=—0.5. , shear
theory; - cevvenes , classical theory ; F, Ist mode; S, 2nd mode; T, 3rd mode.
Q
8.0
T
s
T
5
F
F
10.0
s
T
S
F
F
0.0%=F T
.01 0.05 0.1
h‘)
Fig. 6 Dimensionless frequency parameter vs. thickness ratio for n=4 and g=—0.5. , shear

theory; --+oooeevee , classical theory ; F, Ist mode; S, 2nd mode; T, 3rd mode.
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4). v
Figures 3, 4, 5 and 6 represent the variation of
the frequency parameter with the thickness
ratio( /o) for ¢=—0.5, for C-C, C-S and C-F
plates, respectively. From these figures, it is obser-
ved that the difference between  and Q. turns

20 - ;\

(¥4}

4 P

{4% T i i

out to be increased for all values of power (%) in
the following manner :

(1) with increase of thickness ratio( /),

(i1) with increase of mode number(s),

(iti) with decrease of taper constant(g),

(iv) with increase of radii ratio{g).

7 @>

1

(a) C-C plate

Fig. 7
2 — e, =3 —ev—ee n=4,

=2

3.
(b) C-S plate

Dimensionless frequency parameter vs. taper constant for the Ist mode.

T
-.5 -

-.1

™ &

o} LIRS M maune aumen mun s K4 8] T — T & ¢} T
TS5 31 - -5 -1 A T B B 1.5 .03 .1 -1 -.5 -
(a) C-C plate (b) C-S plate (c) C-F plate
Fig. 8 Dimensionless frequency parameter vs. taper constant for the 2nd mode S T3 BERTRITIRTY s
N==2; —+—-s, =3 er—ro, N=4,




Figures 7 and 8 prove that the natural fre-
quencies of annular plates with thickness expres-
sed by the nth power function are higher than
those by the (5;- 1)th power function for positive
values of @, and vice versa for negative values of
« for all three boundary conditions and for all
values of s, ¢ and /. Also the frequency parame-

Seung-Ho Jang

ters(§2s, Q:) for a C-S plate are larger than those
for C-F plate but are smaller than those for a C
-C plate for all values of %, 5. ¢. ¢ and J,.
Furthermore, Figs. 7. 8§ and 9 show that the
natural frequencies of annular plates become
higher as the radii ratio(e) increases and/or as
the taper constant() decreases for all three

Table 1 Comparison between the results of present theory and those of Vogel and Skinner for annular plate
of @=:0, dimension in (rad/s)
!\’ 0.1 0.3 0.5 J 0.7
s |
CSM - 1 . o \
1 5278. 8765 17274.7 47985.3
VOGEL i 8.1 |
i . Il —
_ \ ) — S R
Present | | 52106 8776.5 17280.9 480983
Theory ‘
SM 2 14587.5 24280 47665.4 ] 132759.4
VOGEL |
- Present ! X
2 ‘ 15044 .4 24168.2 47451.9 | 131910.8
Theory i |
(a) Clamped — Clamped
\ € 0.1 03 0.5 0.7
SR
S-M. | l 34549 5790.2 11580.2 32630.8
VOGEL \ ' ‘) . ' ke
- | — -
cent ‘
Presen ‘ i 3437.3 5803.3 11581.9 32628.7
Theory i
— % ——— . J—— S— —
SM. f T
2 ) 9450. 38388. .
VOGEL ‘ 11644.9 19450.4 38388.3 106847.3
Presént | 7 - o
2 11713.4 19404.7 38273.5 106787.9
Theory
(b) Clamped -— Simply Supported o
0.1 0.3 0.5 0.7
SM. 1 818.9 1289.2 2520.8 7165.8
VOGEL
Present ! 821.1 1291.4 2521.6 7154.5
Theory [
S.M.
2 4894.5 8253.5 16474.9 46385.8
VOGEL
Present 2 5026.5 8236.2 16465.7 464352
Theory ;

(¢) Clamped — Free
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100

20 1

Dt

(a) C-C plate

Fig. 9 Dimensionless frequency

boundary conditions and for all values of », &
and /.

Finally, in Table 1 a comparison of the results
of present theory with those of S. M. Vogel and
D. W. Skinner (they used Bessel function for the
numerical analysis of annular plate with uniform
thickness (¢==0)) is summarized in order to verify
the accuracy of the solution presented in this
paper. This table shows that the Chebyshev collo-
cation method ts very reliable because the differ-
ence is within 1.0% ranging over 0.2~1.0%.

4. Experiment

4.1 Experimental procedure and apparatus

In this paper. the natural frequencies of the
annular plates are detected by the measuring
system shown in Fig. 10 to confirm the validity of
the theoretical values.

By impacting the annular plates with an
impulse hammer, their signals are input to F.F.T.
analyzer through amplifier and then spectrums of
transfer functions are displayed through data
display unit.

The material used in this experiment is SM435C,
Its Young's modulus(f), density(p), and Pois-
son’s ratio(y) are equal to 2.1x10"(kg;/m?),
810(kg, s/m%) and 0.3, respectively. The inner and

(by C-S plate

.5 .6 .7 1.2 .3 .4 .5 .6 .7
(c)y C-F plate

parameter vs. radii ratio tor n=.2

outer radii of the annular plates are 0.045m and 0.
15m, respectively. The experiments are conducted
for C-F plate, for ¢=0, 0.5, —0.7, y=2 and ¢
=0.3.

4.2 Experimental results and analysis
Figure 11 shows the frequency spectrums
appeared in F.F.T. analyzer. In Table 2, the
experimental results are compared with the theo-
retical values. The results agree within a few
percent of the theoretical values. The difference
between experimental results and theoretical val-

ues may be resulted from an imperfect supporting

S — (F =@z ——
Impuse Hummer

Acceleromeler ., /{ JU .
e A Clamped -Free
N T dnndar Plate

Cround

e Power Umit -

!

Dynegmac Analyzer - "10{120 Display l,’mlj

Fig. 10 Schematic diagream of measuring system
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Table 2 Comparison between experimental results and the theoretical values for n=2 and £=0.3

Experimental Calculated Calculated ' .
Frequency Frequency by Frequency by lefefence Difference
a S (rad/s) Classical Theory | Present Theory (EF, CFCT) (EF, CFPT)
(EF) (rad/s) (rad/s) (%) (%)
(CFCT) (CFPT)
1 1245.1 1386.5 1283.5 10.2 3.1
0 2 8220.3 9880.2 8392.6 16.8 2.1
| 1325.7 1445.1 1342.2 8.2 1.3
03 2 9150.4 11266.8 9415.3 19.5 2.9
1 1350.5 1520.8 1387.8 11.2 2.8
07 2 9800.8 12359.1 9889.0 20.7 0.9
40
7. Conclusions
ds 1
The dynamic characteristics of annular plates
with variable thickness are both theoretically and
104 experimentally analyzed. An analysis and a com-
. — T, Jm parison between theoretical and experimental re-
(a) (X kHe) sults are as follows:
a0 (D The values of & (including the effects of
rotatory inertia and shear deformation) are
o] always smaller than those of (& (from the classi-
) cal theory) for all boundary conditions and for all
: values of radii ratio(¢g), thickness ratio(/,), tapper
10 4 constant(g), power(y) and mode number(s).
o A 1o Furthermore, the difference between Q, and Q.
(b) (% kHz) turns out to be increased with decreasing in g
‘o and increasing in j, ¢ and s.
(@ The natural frequencies of annular plates
as are higher when its thickness is expressed by the
nth power function than those by the (5 — 1)th
power function for positive values of @, and vice
10 versa for negative values of ¢, for all three bound-
. 2 ; . . 16 ary conditions and for all values of ¢, }, and s.
() (X XxHz) @ The natural frequencies of annular plates

Fig. 11 Frequency spectrums of annular plate for (a) ¢
=0, (b} ¢=—-0.5, (¢) ¢=—0.7 with Clamped-
Free boundary condition.

condition. Furthermore, if the damping effect
were included in the present theory, the difference
should turn out to be much closer.

tend to increase as taper constant(y) decreases
and/or as radii ratio(g) increases for all bound-
ary conditions and for all values of },, # and s.

@ The frequency parameters((, ) for a C-S
plate are larger than those for a C-F plate but are
smaller than those for a C-C plate for all values
of &, ho, @ n and s.
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