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Vibrational Characteristics of Annular Plates and
Rings of Radially Varying Thinkness
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In this paper. annular plates having thickness variation are studied by deriving the equa

tions of motion on t hc basis of the Mindlin plate theory. The Chebyshev collocation method is

employed 10 solve the differential equation governing the uunsverse motion of such plates. The

dimensionless frequencies arc evaluated for different values ottapcr constanl (a), thickness ratio

(/1,,). radii ratio (c) and power (II). The results of an experimental investigation are also

presented. and the agreement between these findings and the predicted values in theory is

remarkably good. As a result of this siudv. it is found t h.u the effects of rotatory inertia and

transverse shear deformation reduce the natural frequencies for all boundary conditions and for

all values of 1/, II", ,c, a and s (mode number). This study also showed that the natural

frequencies of annular plates with thickness expressed by the nth power function are higher than

those by the (II I )th power function I,)\' positive va lue-, of ii, and vice versa for negative values

<11 I"l' all three boundary co ndit ion-; Moreover. there is a proolthat the nuturul frequencies

"I .rnnu lar plates tend 10 he higher :IS the t.ipcr constant decrease and',)\' a.s the radii ratio

u.crc.r-,e lor all thrcc hou ndu rv c<1ndi'I''Ih alld for all values of II, s and II".

Key \Vords: lorced Vibration, Rotor. Natural r rcqueucy. Annular Plate, l ncrt i.t, Shear

Deformation, Boundurv ('ondition
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and shear deformation

Dimensionless frequency parameter

from classical plate theory

1. Introduction

(a), radii ratio(E), thickness ratio(ho), and

power (II) and for the first three modes of vibra

tion in all three cases. The natural frequencies of

the annular plates are also investigated by experi

ment and the theoretical values are compared

with experimental results.

ii) IX <0

i) a >0

Fig. 2 Stress resultant

Fig. 1 Annular plates of radially varing thickness.

h=o.h o ( j-QX n )

2. Theoretical Analysis

The isotropic, homogeneous and elastic annu

lar plates of radially varying thickness are depict

ed in Fig. I.

The neutral surface of the annular plate is set

on the cylindrical coordinate system(r, e and

z). Consider a plate element dr de subject to

an external force per unit area tl- Then the stress

resultant can be exhibited as shown in Fig. 2.

The use of Newton's 2nd law yields the equilib-

In recent years, the annular plates of variable

thickness have been extensively used in the

dynamic design of various machines and struc

tures to reduce their weights and sizes. C onsider

able work has been done on vibrations of circular

plates of the uniform thickness. Leissa (1969)

reviewed the work done on vibration of plates.

Soni and Rao (1975) studied the vibration of a

circular plate with linear taper. Lenox and

Conway (1980) obtained an exact, closed form

solution for the flexural vibration of a thin annu

lar plate having a parabolic thickness variation.

Gupta and Lal (1982) studied free axisymmetric

vibrations of polar orthotropic annular plates of a

variable thickness. Gorman (1983) applied an

annular finite element method to annular discs

with variable thickness which have polar orth

otropic characteristics. Ramaiah and Vijaya

kumar (1985) applied the Rayleigh-Ritz method

to obtain the natural frequencies of polar orth

otropic annular plate. In addition, Kang (1992)

treated a Fourier series method for polygonal

domains; large element computation for plates.

Lee and Sin (1994) studied the Mindlin plate

finite elements by using a modified transverse

displacement.

In this paper, the equations of motion of annu

lar plates whose thickness varies with H =, li o( I

axll)(for 11= 1,2,3, and 4) are established with

the effects of rotatory inertia and shear deforma

tion included. Since the plate used in the actual

practice may have a large thickness, it is impor

tant to include the effects of rotatory inertia and

shear deformation in order to predict their

dynamic behavior with a fair amount of accuracy.

Frequency equations are determined using the

Chebyshev collocation method for three combina

tions of boundary conditions (i.e., C-C, C-S, C

-F; C: clamped edge. S: simply supported

edge, F: free edge). And, the frequencies are

computed for different val ues of taper constant
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where

(6a)

A o=(I-ax)2
')

AI=-'::"(l-ax)(1-5ax)
x

A 2= .~2( I - ax )2(Qffx2( I--k)-3}- ax

(l-ax)(10+3v)+ 12O'2x2)

AJ= -~ ( I - a.x)2{Qb: 2(1 +-k
l

)+ 3}+axx ·0

(l-ax){6+3 v+5-Q_~X2(5+-kl)

+3a2x 2(3 v +2»)

4 - I ( I )2( 2 _2( 2 2 ) I" 4----:-< (-ax Qsx Qsx -I -k-- I )
x 0

-3}- ax(l-axH8+Qlx2(2+3 ;)
fro

-3a2x 2(1 +2v--Qlx2
)

_l~Q2 4)
12 sX

Zn

Case 2) When n = 2, that is, when H = ho( I

- ax 2 ) the coefficients A o to A. can be deter-

where

Consider an annular plate whose thickness is

expressed as power functions. That is,

h=aho(l-ax")(n=l, 2, 3, and 4) (5)

When the numerical value of n is very large the

thickness suddenly varies near the edge. Since

such plates are not common in practice, the values

n = I, 2, 3, and 4 are considered in this paper. The

plate thickness changes linearly for n> I and

changes parabolically for =2.

Elimination of zi) from Eq. (4) and substitution

of Eq. (5) into the new equation leads to an

uncoupled differential equation in rjJ. The result

ing equation for the thickness variation in the

radial direction is reduced to the non-dimensional

4th order linear homogeneous differential equa

tion with variable coefficients as follows:

d 4rjJ d 3 ¢ d 2 ¢ drjJ
A o-d--4-+ A'-d.3 +A2-d2 +A3d--x x x x
+A4¢=0 (6)

Case I) When n=l, that is, when H=ho(l-a
.r) the coefficients A o to A 4 can be determined as

follows:

(3)

(2c)

(2a)

(2b)

iot r, f)=fC(r)e,wt and

rjJr(r, t)=rjJ(r)e'wt

For harmonic motion,

Having substituted Eqs. (2c) and (3) into Eqs.

(2a) and (2b) and rearranging, the results can be

rewritten as follows:

1Jf - 12kGh (I ~,v:l( rjJ +dfU) =0 (4a)
E dr

-!1.(rlJf) + 12p rh~,v.2) ahu=O (4b)
dr E

where

rium equations.

These equations can be simplified as follows:

iM-,--+ M!_~Mo +_1._ aMro~ Qar r r ae r

~ ph:J ;J2¢r
---12:- at2 ( Ia)

1N," +_~Mro +_1. aMo_ Qar r r ae 0

_ ph3 a2 ¢ o
--IT at" (lb)

aQr +_.!.. aQ"-+~+G - hlu' (Ic)ar r ae r 7- p a(
The right hand side terms of Eqs. ( Ia) and (I b)

are the rotatory inertia of the element. In the

classical plate theory these terms are neglected.

Equations (La), (1 b) and (Ic) are the equations

of motion of an annular plate when an external

force q is applied (Here, the equations of motion

for free vibration are obtained when q =0).
For the axisymmetric motion, Eqs. (I a), (I b)

and (Ic) become

1M, + MC_Me _ Q _ ph~ a2 r/har r r r: 12 at 2

S2r.+iJQr = h a2
w

r ar p at 2



Vibrational Characteristics of Annular Plates and Rings of Radially Varying Thinkness 149

mined as follows:

A o= ( 1- ax 2)2

A,=~(J - ax 2)( I - 9ax 2)
x

A2=~2( 1- ax 2 j2 {Q.h -2( I +_/,1_)_ 3} - (J
x ~

-- ax 2){2ax2
( 10+ 3 i-) + 18m·2

}

+48a2x 4J

A3=~«1- ax 2)2{Qffx2(1+_;,L+3)} + (I
x' fu

-ax2l{2ax 2(11 +3 lJ- Qh·2(S+3-/,L_»
(0

+ 12ax 2(J -+ lJ)}+ 12a2x.4(3lJ+ 2)

+ 60a2x 4J

A4=-~4((\-ax2)2{Qh2((.lJ~x2_1) J~o-I)

- 3} -- (I - ax 2){2ax 2(8+Qlx2(2

+3_/,lJ »-6m;2( I + lJ)}-12a2x4( I +2lJ
<0

- Qh2) ---jl;Qlx4+60a2x4lJJ (6b)
'/0

Case 3) When n = 3, that is, when H = }zo(\

- ax 3
) the coefficients A o to A 4 can be deter

mined as follows:

A o= (I - ax3)2

A,=2( I -- ax 3)(1- 13ax3)
x

A2=~2« 1-- ax 3)2{Qh 2( 1+ J~o) -3} +( 1

- ax;'){-- 3m;3(10+ 3lJ) - S4ax:J}

+ 108a2x 6J
A,=J3(I--ax;,)2{Qb;2(I+k

l +3)}-(1
x 0

- w:;'l{ -- 3ax 3( I 1+ 3lJ) - Qh·2(S

+-k»-36ax3(1 + lJ)- 18ax:J
}

+27a2x6(3 lJ+2) +270a2x 6J

A4=_IT( 1-- ax3)2{Q~x2«Qlx2-1)-kl -I)
x 0

-3} +( 1- ax 3 l{ -3ax3(8+ Qh2(2

+3 Jl-!...» + 18ax3
( I + lJ)-18ax:JlJ}

/(0

-27a2x6 ( 1+2lJ-Qh2l--jI;.Qh4
10

+ 270a2x6 lJJ (6c)

Case 4) When n =4, that is, when H = /zo(\

- ax') the coefficients A o to A 4 can be deter

mined as follows:

Ao=(\-ax4)2

2
A,=-( 1- ax4)( 1- 17ax 4)

x

A2=~« 1- ax 4)2{Qh2( I ++)-3}+( 1x ,eo
- ax 4

) { -4ax 4
( 10+3lJ) -108m:4

}

+ 192a2x8)

A3=Jr ( I - a:\;4)2{.Qb :2( 1+-k
l

)+3}-(1
x 0

-ax4l{-4ax4( II +3lJ)-Qh2(S

+ -k}--» - 72ax 4( I + lJ)- 72ax4}
o

+48a2x8(3lJ+2)+ 720a2x 8
)

A4=~((I- ax 4)2{Qh2«Qffx 2
- I >-k

l
-I)

x 0

- 3}+ (I - ax4){ -4ax4(8 + Qlx2(2

3lJ
+-;-» + 36ax4( 1+ lJ)--72ax4lJ}

ko
12Q2

-48a2x8(1+2lJ-Qlx2)-~J2sx 4
10

+720a2x8lJ) (6d)

3. Numerical Analysis

3.1 Method of solution
Equation (6) is a linear differential equation

with variable coefficients. Its solution can not be

easily found in closed form. The Chebyshev collo

cation method has been used in this paper. Since

this method is applicable only in the interval

(- I, I), the range of the differential Eq. (6) can

be transformed from the interval (c, I) to ( - I, I)

by the following transformation

(7a)

Where, Y is defined as

Y=Yj
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(8)

where, A o to A 4 are variable coefficients of Eq.

(6).

According to the Chebyshev collocation

method,

j 4 J In

c -y) .'~" K T
(ly·1 l~:i 1·[-

(9a)

Where, lJ'v'] is an (m~ 4) by m matrix, and {K}
is a column vector of order m. Other four equa

tions can be obtained by employing the boundary

conditions at the inner and outer edges of an

nulus; Y'= - I and y = I respectively. Thus, m

equations and m unknown constants are

obtained.

where. K/s(i=-S. 6, 11/) are unknown con-

stants, and Ti'» are Chebyshev polynornia Is
defined as

T;> I, 7~ -cy. 7~=2y2- I •.......

T, 2V]~1 -- T, -c, i?;2

If Eq. (9a) is iteratively integrated with respect to

y,

(/J and its derivatives can be expressed in terms of

T and tc;

3.2 Boundary conditions and characteristic
equation

The following combinations of boundary con

ditions are considered:

i) both inner and outer edges clamped(C-C)

H7 (y ) 1.1'--.1 =0

(p(y)IY~'I=o

These equations can be expressed in a matrix

form as

Having substituted Eqs. (9a-e) into Eq. (6),

the final equation for m (number of Chebyshev

collocation point) can be exhibited in a matrix

form.

where. K1• K". K, and K4 are the constants of

integration.

The superscript over T denoting the integra-

tion with respect to y is defined as follows:

T/I)c~f Tidy = ~ [7t~i-~~= tJ i> r,

Tl_]' -1'1- )i~Z;)
10- I· 1---4

( 12)

[NeeJ {K}={O) (II)

where, CNnJ is a 4 by m matrix, and {K} is a

column vector of order m.

ii) inner edge clamped. outer edge simply

supported(C - S)

TV(y) I 1=0.

or in a matrix form

(/J(y) 1.1' 0

or in a matrix form

where, is a 4 by m matrix, and {Kf is a

column vector of order m.

iii) inner edge clamped, outer edge free(C - F)

Wry) IF IC~O,

( __L) cJ1J + !J_ 1J Ivi =0
I-E. dy x .

(p(y) Iy~ I 0, (/J + (-I-~--) djW_ I v~ 1 = 0-E. (y -

(ge)

(9c)

(9b)

(9d)

m

-:~K, 7"_0'4'
1=--:1

o

~NCfl {m~{Oi (13)

where, [No] is a 4 by m matrix, and {K} is a

column vector of order m,

Combining Eqs. (II). (12), (13) and (10), we

obtain the following equations.

2.3, .... m-4)

c-s case: r/YJ {Kflnxl={O}
l.. .LVC~ m x m

or in a simple form.

[iV' [K}={O} ( 10)

c-c case: {J{ 1=c 10}
In

( 14)

( 15)
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(16)[ N ] 'C-F case: -", . {K}mx!=10j
;''''CF f!1:-(m

For nontrivial solutions of Eqs. (14). (15) and

( 16), the frequency determinant must be vanished

and hence we obtain

(]9)

Equations (17), (18) and (19) are thus charac

teristic equations for the C-C, C-S and C-F
cases. respectively.

VI--".... ·~·O

j'v'cc
( 17)

( IX)

3.3 Numerical evaluation and discussion
Since a plate is an example of a continuous

system. infinitely many roots of a frequency
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parameter can be obtained. The frequency param
eters are computed for the first three modes of
vibration according to the present theory. The

number of collocation points (i. e., m) is fixed at
13, since further increase in m does not noticeably
improve the results.

Frequency parameters .l2s and Q c are computed

for all three cases of the boundary condition;

(i) when the radii ratioCd varies form 0.1 to O.
7 by an increment of 0.1,

(ii) when the thickness ratio(ho) varies form O.
01 to 0.2 by an increment of 0.01,

(iii) when the taper constantt y) varies form -0.

7 to 0.7 by an increment ofO.2(for n= 1,2,3 and

n
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h.
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4).

Figures 3, 4, 5 and 6 represent the variation of
the frequency parameter with the thickness
ratio(ho) for a= -0.5, for C-C, C-S and C-F

plates, respectively. From these figures, it is obser

ved that the difference between Q" and Qc turns

out to be increased for all values of power (n) in
the following manner:

(i) with increase of thickness ratio(ho),

(ii) with increase of mode numberte),

(iii) with decrease of taper constantt y),

(iv) with increase of radii ratio(c).
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(a) C -C plate
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Fig. 7 Dimensionless frequency parameter vs. taper con stant for the 1st mode. ~~-, n·= I; , n
=2; -.-., n=3; --00-00, n=4.
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Fig. 8 Dimensionless frequency parameter vs. taper con stant for the 2nd mode ---, n = I ;
n=2; -.-., n=3; -00-.. , n==4.
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Figures 7 and 8 prove that the natural fre

quencies of annular plates with thickness expres

sed by the nth power function are higher than

those by the (JI- I)th power function for positive

values of a, and vice versa for negative values of

a for all three boundary conditions and for all

values of s, E and lio. Also the frequency parame-

ters(Qs. Qd for a C-S plate are larger than those

for C - F plate but are smaller than those for a C

-C plate for all values of n, s, a. E and lio.
Furthermore, Figs. 7. 8 and 9 show that the

natural frequencies of annular plates become

higher as the radii ratio(E) increases and/or as

the taper co nst antt jv) decreases for all three

131910.8

47665.42

Table 1 Comparison between the results of present theory and those of Vogel and Skinner for annular plate

of a=O, dimension in (rad/s)

C~~~~ ~'~T-o~-~I-·0.5 ~r 0.7 ~

V~~~_L_j ~-- I -- 527~ -- -876;- --+--1~7274.7:-~985.3 -.-..

Present
Theory

_.- ~.._._._-_.-

SM.

VOGEL

__~~~~e:~S;_J.__2__~i__ ~50444_. L 241682 t 474519

(a) Clamped - Clamped

_ ~=-;I----~O.-I -I~=='- 03 - I 05 1~ 0.7

------ -+ ~ - ----+---- ----- -~---- ~ --~-
S.M. I I I

. _~~?.E:~ -+ '_ __~_~5~__ __ 57~0 2 I 11580.2 _ 32630.8

Present· r 1 =--=--t I__~~~~: ,:::~:i ~~::I:::::: r I:::::
~~e:~~: 2 II~~ - L_'_ 194iJ47 t3'27;5~t'067;;' =

(h) Clamped -- Simply Supported

.. -._-.-jSJ. 0' ..... 0.7 l=-~-J. 0._7_

__ :~~~ __+-_~I "'9 __ '2892.; 2520.8 I 7165.8

-=;~~; .. i~ 1. __ ~:::: ~T['...__·I - I:::::=1 4::~>
_!~eClrY 2 ~_~ 5026.5 __ ___~3~2 __116465.7 4643~.~ __

(c) Clamped -- Free
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(e) C F plate

60

20

(1=.7

.1 .2 .3 .4 .5 .6 .7

(b) CS plate

20

60

(a) CC plate

.1 .2 .3 .4 .5 .6 .7

60

20

Fig. 9 Dimensionless frequency parameter vs. radii ratio for n 2

boundary conditions and for all values of n. s
and /ZU.

Finally, in Table I a comparison of the results

of present theory with those of S. M. Vogel and

D. W. Skinner (they used Bessel function for the

numerical analysis of annular plate with uniform

thickness (ac=cO)) is summarized in order to verify

the accuracy of the solution presented in this

paper. This table shows that the Chebyshev collo

cation method is very reliable because the differ

ence is within 1.0% ranging over 0.2 - 1.0%.

4. Experiment

outer radii of the annular plates are 0.045m and O.

15m, respectively. The experiments are conducted

for C·F plate, for a=O, 0.5,--0.7, n=2 and E

c=0.3.

4.2 Experimental results and analysis

Figure II shows the frequency spectrums

appeared in F.F.T. analyzer. In Table 2, the

experimental results are compared with the theo

retical values. The results agree within a few

percent of the theoretical values. The difference

between experimental results and theoretical val

ues may be resulted from an imperfect supporting

4.1 Experimental procedure and apparatus
In this paper. the natural frequencies of the

annular plates are detected by the measuring

system shown in Fig. 10 to confirm the validity of

the theoretical values.

By impacting the annular plates with an

impulse hammer, their signals are input to F.F.T.

analyzer through amplifier and then spectrums of

transfer functions are displayed through data

display unit.

The material used in this experiment is SM45C.

Its Young's modulust j-'). densityto), and Pois

son's ratio(lJ) are equal to 2.1 >< 1011l(kgr/m
2

) .

810(kg l simi) and 0.3, respectively. The inner and

impuse Hammer

I'lall

'Dynamic Arutly:cr

Fig. 10 Schematic diagream of measuring system
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Table 2 Comparison between experimental results and the theoretical values for n=2 and 6=0.3

Experimental
Calculated Calculated

Frequency
Frequency by Frequency by Difference Difference

a s
(rad/s)

Classical Theory Present Theory (EF, CFCT) (EF, CFPT)

(EF)
(rad/s) (rad/s) (%) (%)

(CFCT) (CFPT)

I 1245.1 1386.5 1283.5 10.2 3.1
0 ----

2 8220.3 9880.2 8392.6 16.8 2.1

1 1325.7 1445.1 1342.2 8.2 1.3
-0.5

2 9150.4 11266.8 9415.3 19.5 2.9

1 \350.5 1520.8 1387.8 11.2 2.8
-0.7

2 9800.8 12359.\ 9889.0 20.7 0.9

40 r-----------------,

7. Conclusions

Fig. 11 Frequency spectrums of annular plate for (a) a
=0, (b) a= -0.5, (c) a> -0.7 with Clamped
Free boundary condition.

condition. Furthermore, if the damping effect

were included in the present theory, the difference

should turn out to be much closer.

The dynamic characteristics of annular plates

with variable thickness are both theoretically and

experimentally analyzed. An analysis and a com

parison between theoretical and experimental re

sults are as follows:

CD The values of .Qs (including the effects of

rotatory inertia and shear deformation) are

always smaller than those of .Qc (from the classi

cal theory) for all boundary conditions and for all

values of radii ratio(c;), thickness ratio(ho), tapper

constant( a), power( n) and mode numbert e).

Furthermore, the difference between .Qs and .Qc
turns out to be increased with decreasing in a

and increasing in ho, E and s.

® The natural frequencies of annular plates

are higher when its thickness is expressed by the

nth power function than those by the i n - I jth

power function for positive values of a, and vice

versa for negative values of a, for all three bound

ary conditions and for all values of E, ho and s,
® The natural frequencies of annular plates

tend to increase as taper constanttj-) decreases

and/or as radii ratio(E) increases for all bound

ary conditions and for all values of ho, nand s.

@ The frequency pararnetersrjj; .Qd for a C-S

plate are larger than those for a C-F plate but are

smaller than those for a C-C plate for all values

of E, hs; a, nand s.

10
(X kHz)

8 10
(X kHz)(c)

(b)

o

40

40

dB

dB

dB

10

10
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